论文标题
知识感知的神经集体矩阵分解用于跨域建议
Knowledge-aware Neural Collective Matrix Factorization for Cross-domain Recommendation
论文作者
论文摘要
跨域推荐(CDR)可以帮助客户在不同域中找到更多令人满意的物品。现有的CDR模型主要使用普通用户或映射功能作为域之间的桥梁,但在充分利用跨域的额外知识方面的探索非常有限。在本文中,我们建议将CDR的知识图(kg)纳入,这使不同领域中的项目可以共享知识。为此,我们首先从Freebase KG构建了一个新的数据集AmazonKg4CDR和Amazon评论数据的一个子集(两个域对:电影音乐,电影书籍)。这个新的数据集有助于将知识与CDR内部和跨域项目桥接。然后,我们提出了一个新框架,KG感知的神经集体矩阵分解(KG-NEUCMF),以利用KG来丰富项目表示。它首先通过图形卷积自动编码器学习项目嵌入,以从kg中的相邻和高阶邻居中捕获域特异性和域通用知识。然后,我们最大程度地提高了从kg和用户项目矩阵中学到的项目嵌入之间的共同信息,以建立跨域关系以获得更好的CDR。最后,我们对新建的数据集进行了广泛的实验,并证明我们的模型明显优于表现最佳的基准。
Cross-domain recommendation (CDR) can help customers find more satisfying items in different domains. Existing CDR models mainly use common users or mapping functions as bridges between domains but have very limited exploration in fully utilizing extra knowledge across domains. In this paper, we propose to incorporate the knowledge graph (KG) for CDR, which enables items in different domains to share knowledge. To this end, we first construct a new dataset AmazonKG4CDR from the Freebase KG and a subset (two domain pairs: movies-music, movie-book) of Amazon Review Data. This new dataset facilitates linking knowledge to bridge within- and cross-domain items for CDR. Then we propose a new framework, KG-aware Neural Collective Matrix Factorization (KG-NeuCMF), leveraging KG to enrich item representations. It first learns item embeddings by graph convolutional autoencoder to capture both domain-specific and domain-general knowledge from adjacent and higher-order neighbours in the KG. Then, we maximize the mutual information between item embeddings learned from the KG and user-item matrix to establish cross-domain relationships for better CDR. Finally, we conduct extensive experiments on the newly constructed dataset and demonstrate that our model significantly outperforms the best-performing baselines.