论文标题
宽带音频波形评估网络:有效,准确的语音质量估计
Wideband Audio Waveform Evaluation Networks: Efficient, Accurate Estimation of Speech Qualities
论文作者
论文摘要
宽带音频波形评估网络(Wawenets)是直接在宽带音频波形上运行的卷积神经网络,以便对这些波形进行评估。在目前的工作中,这些评估赋予了电信演讲的素质(例如嘈杂,清晰度,整体语音质量)。 Wawenets是无引用网络,因为它们不需要他们评估的波形的``参考''(原始或未发生的)版本。我们最初的Wawenet出版物引入了四个Wawenets,并模拟了已建立的全参考语音质量或清晰度估计算法的输出。我们已经更新了Wawenet架构,以提高高效和有效性。在这里,我们提出了一个密切跟踪七个不同质量和可理解性值的单一Wawenet。我们创建了第二个网络,该网络还跟踪四个主观语音质量维度。我们提供第三个网络,该网络侧重于主观质量分数,并达到很高的共识水平。这项工作用13种语言利用了334小时的演讲,超过200万个全参考目标值和超过93,000个主观意见分数。我们还解释了Wawenets的操作,并使用信号处理的语言确定其操作的关键:Relus从策略上将光谱信息从非DC组件移动到DC组件中。 96输出信号的直流值在96-D潜在空间中定义了一个向量,然后将该向量映射到输入波形的质量或清晰度值。
Wideband Audio Waveform Evaluation Networks (WAWEnets) are convolutional neural networks that operate directly on wideband audio waveforms in order to produce evaluations of those waveforms. In the present work these evaluations give qualities of telecommunications speech (e.g., noisiness, intelligibility, overall speech quality). WAWEnets are no-reference networks because they do not require ``reference'' (original or undistorted) versions of the waveforms they evaluate. Our initial WAWEnet publication introduced four WAWEnets and each emulated the output of an established full-reference speech quality or intelligibility estimation algorithm. We have updated the WAWEnet architecture to be more efficient and effective. Here we present a single WAWEnet that closely tracks seven different quality and intelligibility values. We create a second network that additionally tracks four subjective speech quality dimensions. We offer a third network that focuses on just subjective quality scores and achieves very high levels of agreement. This work has leveraged 334 hours of speech in 13 languages, over two million full-reference target values and over 93,000 subjective mean opinion scores. We also interpret the operation of WAWEnets and identify the key to their operation using the language of signal processing: ReLUs strategically move spectral information from non-DC components into the DC component. The DC values of 96 output signals define a vector in a 96-D latent space and this vector is then mapped to a quality or intelligibility value for the input waveform.