论文标题

半透明体积渲染的单眼深度分解

Monocular Depth Decomposition of Semi-Transparent Volume Renderings

论文作者

Engel, Dominik, Hartwig, Sebastian, Ropinski, Timo

论文摘要

神经网络在从颜色图像中提取几何信息方面取得了巨大成功。特别是,在现实世界中,单眼深度估计网络越来越可靠。在这项工作中,我们研究了这种单眼深度估计网络对半透明体积呈现图像的适用性。由于众所周知,如果没有明确定义的表面,在体积的场景中很难定义深度,我们考虑了在实践中出现的不同深度计算,并比较了在评估过程中考虑到不同程度的不透明度在渲染渲染中,对这些不同解释的最先进的单眼深度估计方法进行了比较。此外,我们研究了如何扩展这些网络以进一步获取颜色和不透明度信息,以便基于单个颜色图像创建场景的分层表示。该分层表示由空间分离的半透明间隔组成,这些间隔是复合到原始输入渲染的。在我们的实验中,我们表明,现有的单眼深度估计方法可以适应在半透明体积渲染上表现良好,该渲染在科学可视化领域中具有多种应用,例如重新组合其他物体和标签或其他阴影。

Neural networks have shown great success in extracting geometric information from color images. Especially, monocular depth estimation networks are increasingly reliable in real-world scenes. In this work we investigate the applicability of such monocular depth estimation networks to semi-transparent volume rendered images. As depth is notoriously difficult to define in a volumetric scene without clearly defined surfaces, we consider different depth computations that have emerged in practice, and compare state-of-the-art monocular depth estimation approaches for these different interpretations during an evaluation considering different degrees of opacity in the renderings. Additionally, we investigate how these networks can be extended to further obtain color and opacity information, in order to create a layered representation of the scene based on a single color image. This layered representation consists of spatially separated semi-transparent intervals that composite to the original input rendering. In our experiments we show that existing approaches to monocular depth estimation can be adapted to perform well on semi-transparent volume renderings, which has several applications in the area of scientific visualization, like re-composition with additional objects and labels or additional shading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源