论文标题

监督最佳运输

Supervised Optimal Transport

论文作者

Cang, Zixuan, Nie, Qing, Zhao, Yanxiang

论文摘要

最佳运输是一种用于资源最佳分配的理论,在天体物理学,机器学习和成像科学等各个领域都广泛使用。但是,许多应用程序对传统最佳运输无法执行的运输计划施加了元素的约束。在这里,我们介绍了监督的最佳运输(SOT),该运输(SOT)制定了约束的最佳运输问题,其中禁止根据特定应用程序在某些元素之间耦合。事实证明,SOT等同于$ l^1 $惩罚优化问题,从中设计了有效的算法来求解其熵正规化配方。我们通过将SOT与传统OT的其他变体进行比较,在色彩传递问题中进行了比较,证明了SOT的能力。我们还研究了SOT公式中的Barycenter问题,我们发现并证明了独特的反向和部分选择(控制)机制。监督的最佳运输广泛适用于涉及约束运输计划的应用,并应避免归一化来保留原始单位。

Optimal Transport, a theory for optimal allocation of resources, is widely used in various fields such as astrophysics, machine learning, and imaging science. However, many applications impose elementwise constraints on the transport plan which traditional optimal transport cannot enforce. Here we introduce Supervised Optimal Transport (sOT) that formulates a constrained optimal transport problem where couplings between certain elements are prohibited according to specific applications. sOT is proved to be equivalent to an $l^1$ penalized optimization problem, from which efficient algorithms are designed to solve its entropy regularized formulation. We demonstrate the capability of sOT by comparing it to other variants and extensions of traditional OT in color transfer problem. We also study the barycenter problem in sOT formulation, where we discover and prove a unique reverse and portion selection (control) mechanism. Supervised optimal transport is broadly applicable to applications in which constrained transport plan is involved and the original unit should be preserved by avoiding normalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源