论文标题

运动学变量和特征工程用于粒子现象学

Kinematic Variables and Feature Engineering for Particle Phenomenology

论文作者

Franceschini, Roberto, Kim, Doojin, Kong, Kyoungchul, Matchev, Konstantin T., Park, Myeonghun, Shyamsundar, Prasanth

论文摘要

运动变量在对撞机的现象学中一直发挥着重要作用,因为它们通过将信号事件与不需要的背景事件分开来加快新颗粒的发现,并允许测量粒子特性,例如质量,耦合,旋转等。在过去的10年中,在过去的10年中,已经设计了大量的动力学变量,并允许大量的促销者,并将其重建,以供成型实验。高维实验数据到较低的可观察物,从中可以轻松提取相位空间的潜在特征,并制定更好的数据分析策略。我们回顾了相位空间运动学领域的这些最新发展,总结了具有重要现象学意义和物理应用的新运动变量。我们还审查了最近建议的分析方法和专门设计的分析方法和技术,以利用新的运动学变量。如今,机器学习正在通过包括对撞机现象学在内的许多粒子物理学领域进行渗透,我们讨论了运动变量和机器学习技术的互连和相互互补性。我们最终讨论了如何将最初用于围栏发展开发的运动变量的利用扩展到其他高能物理实验,包括中微子实验。

Kinematic variables have been playing an important role in collider phenomenology, as they expedite discoveries of new particles by separating signal events from unwanted background events and allow for measurements of particle properties such as masses, couplings, spins, etc. For the past 10 years, an enormous number of kinematic variables have been designed and proposed, primarily for the experiments at the Large Hadron Collider, allowing for a drastic reduction of high-dimensional experimental data to lower-dimensional observables, from which one can readily extract underlying features of phase space and develop better-optimized data-analysis strategies. We review these recent developments in the area of phase space kinematics, summarizing the new kinematic variables with important phenomenological implications and physics applications. We also review recently proposed analysis methods and techniques specifically designed to leverage the new kinematic variables. As machine learning is nowadays percolating through many fields of particle physics including collider phenomenology, we discuss the interconnection and mutual complementarity of kinematic variables and machine learning techniques. We finally discuss how the utilization of kinematic variables originally developed for colliders can be extended to other high-energy physics experiments including neutrino experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源