论文标题

$ g_ {n,p} $的Biclique分区的关键概率

A Critical Probability for Biclique Partition of $G_{n,p}$

论文作者

Bohman, Tom, Hofstad, Jakob

论文摘要

图$ g =(v,e)$的双式分区编号,表示为$ bp(g)$,是$ g $ $ g $的成对边缘分离的最小数量,以便$ g $的每个边缘属于其中一个。很容易看到$ bp(g)\ leq n -α(g)$,其中$α(g)$是$ g $的独立集的最大尺寸。在80年代,Erdős的猜想是,几乎每个图形$ g $ equality均具有;即,如果$ g = g_ {n,1/2} $,则具有高概率的$ bp(g)= n -α(g)$。阿隆表明这是错误的。我们表明,如果我们采用$ g = g_ {n,p} $,$ p $是恒定且小于一定阈值$ p_0 \ of约0.312 $,则表明ERDőS的猜想是正确的。这验证了Chung and Peng的猜想,这些值为$ P $。我们还表明,如果$ p_0 <p <1/2 $,则$ bp(g_ {n,p})= n-(1 +θ(1))α(g_ {n,p})$具有很高的可能性。

The biclique partition number of a graph $G= (V,E)$, denoted $bp(G)$, is the minimum number of pairwise edge disjoint complete bipartite subgraphs of $G$ so that each edge of $G$ belongs to exactly one of them. It is easy to see that $ bp(G) \leq n - α(G)$, where $α(G)$ is the maximum size of an independent set of $G$. Erdős conjectured in the 80's that for almost every graph $G$ equality holds; i.e., if $ G=G_{n,1/2}$ then $bp(G) = n - α(G)$ with high probability. Alon showed that this is false. We show that the conjecture of Erdős is true if we instead take $ G=G_{n,p}$, where $p$ is constant and less than a certain threshold value $p_0 \approx 0.312$. This verifies a conjecture of Chung and Peng for these values of $p$. We also show that if $p_0 < p <1/2$ then $bp(G_{n,p}) = n - (1 + Θ(1)) α(G_{n,p})$ with high probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源