论文标题
在某些完整的非紧凑型Kähler歧管上的Hermitian-Yang-Mills连接
Hermitian-Yang-Mills connections on some complete non-compact Kähler manifolds
论文作者
论文摘要
我们给出了一个代数标准,即在一个全体形态矢量捆绑$ e $上的投射性赫米尼亚扬 - 扬米尔斯在某些完整的非压缩的kähler歧管$(x,ω)上,$ x $是在紧凑型kähler歧管上的互补和库术的群体,其中$ x $是$(x,ω)$,其中是互补的。 $ω$。我们介绍了一对$(1,1)$的稳定性概念,该类别概括了标准坡度稳定性。我们证明,在我们的环境中,这种新的稳定条件对于在我们的环境中的投影中存在遗体阳性式的米尔斯指标既足够且必要。
We give an algebraic criterion for the existence of projectively Hermitian-Yang-Mills metrics on a holomorphic vector bundle $E$ over some complete non-compact Kähler manifolds $(X,ω)$, where $X$ is the complement of a divisor in a compact Kähler manifold and we impose some conditions on the cohomology class and the asymptotic behaviour of the Kähler form $ω$. We introduce the notion of stability with respect to a pair of $(1,1)$-classes which generalizes the standard slope stability. We prove that this new stability condition is both sufficient and necessary for the existence of projectively Hermitian-Yang-Mills metrics in our setting.