论文标题

具有自动标签的解释和实例生成的几杆细粒实体键入

Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation and Instance Generation

论文作者

Huang, Jiaxin, Meng, Yu, Han, Jiawei

论文摘要

我们研究了很少的细粒实体键入(FET)的问题,其中只有几个带注释的实体对每种实体类型都提供了上下文。最近,基于及时的调整通过将实体类型分类任务作为“填补空白”的问题,在几次射击方案中表现出了优于标准微调的性能。这允许有效利用预训练的语言模型(PLM)的强语建模能力。尽管当前基于迅速的调整方法成功,但仍有两个主要挑战:(1)提示中的口头调查器是由外部知识库手动设计或构建的,而无需考虑目标语料库和标签层次结构信息,并且(2)当前的方法主要利用PLM的代表力,但并未通过广泛的通用通用质疑来探索其发电的能力。在这项工作中,我们提出了一个由两个模块组成的新型框架:(1)实体类型标签的解释模块自动学习通过共同利用几乎没有播放实例和标签层次结构来将类型标签与词汇联系起来,并基于类型的实例生成基于新的实例,以培训新的实例,以确定新的实例,以确定新的实例。在三个基准数据集上,我们的模型优于大量利润的现有方法。可以在https://github.com/teapot123/fine-graining-entity-typing上找到代码。

We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type. Recently, prompt-based tuning has demonstrated superior performance to standard fine-tuning in few-shot scenarios by formulating the entity type classification task as a ''fill-in-the-blank'' problem. This allows effective utilization of the strong language modeling capability of Pre-trained Language Models (PLMs). Despite the success of current prompt-based tuning approaches, two major challenges remain: (1) the verbalizer in prompts is either manually designed or constructed from external knowledge bases, without considering the target corpus and label hierarchy information, and (2) current approaches mainly utilize the representation power of PLMs, but have not explored their generation power acquired through extensive general-domain pre-training. In this work, we propose a novel framework for few-shot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization. On three benchmark datasets, our model outperforms existing methods by significant margins. Code can be found at https://github.com/teapot123/Fine-Grained-Entity-Typing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源