论文标题

UGKWP用于三维燃气层的模拟

UGKWP for three-dimensional simulation of gas-particle fluidized bed

论文作者

Yang, Xiaojian, Wei, Yufeng, Shyy, Wei, Xu, Kun

论文摘要

流化床中的气体固定颗粒两相流动显示复杂的物理。在我们先前的工作之后,首先将基于气体运动方案(GKS)和统一的气体运动波颗粒方法(UGKWP)的多尺度框架扩展到对流化床的三维模拟。对于固体颗粒的演化,与广泛使用的欧拉和拉格朗日方法不同,UGKWP根据粒子细胞的Kundsen数字($ kn $)的连续变化,将波(密集的粒子区域)和离散粒子区域(稀释粒子区域)统一(稀释粒子区域)无缝。在高粒子碰撞状态和欧拉尔 - 拉格朗日(EL)中,在无碰撞粒子制度中,用于耦合气体进化系统的GKS-ugkWP可以自动成为欧拉 - 欧拉(EE)方法。在过渡方案中,UGKWP可以实现Eulerian和Lagrangian限制配方之间的平稳过渡。更重要的是,分析波和离散粒子的质量分布的重量与波浪的本地$ kn $相关,而$ \ exp(-1/kN)$和$(1- \ exp(-1/kN))$用于离散粒子。结果,UGKWP提供了一种最佳的建模,用于捕获物理准确性和数值效率的粒子相。在数值模拟中,UGKWP不需要任何先前的稀释/致密区域分裂,这使其适用于流化的床问题,其中稀释/过渡/致密区域即时共存并动态互连。在本文中,基于GKS-UGKWP公式,在3D中模拟了两个实验室尺度的流体化病例,并将模拟结果与实验测量结果进行了比较。流化床的典型异质流量特征被很好地捕获,并且统计数据与实验数据非常吻合。

The gas-solid particle two-phase flow in a fluidized bed shows complex physics. Following our previous work, the multi-scale framework based on gas-kinetic scheme (GKS) and unified gas-kinetic wave-particle method (UGKWP) for the gas-particle system is firstly extended to the three-dimensional simulation of the fluidized bed. For the solid particle evolution, different from the widely-used Eulerian and Lagrangian approaches, the UGKWP unifies the wave (dense particle region) and discrete particle (dilute particle region) formulation seamlessly according to a continuous variation of particle cell's Kundsen number ($Kn$). The GKS-UGKWP for the coupled gas-particle evolution system can automatically become an Eulerian-Eulerian (EE) method in the high particle collision regime and Eulerian-Lagrangian (EL) formulation in the collisionless particle regime. In the transition regime, the UGKWP can achieve a smooth transition between the Eulerian and Lagrangian limiting formulation. More importantly, the weights of mass distributions from analytical wave and discrete particle are related to the local $Kn$ by $\exp(-1/Kn)$ for wave and $(1-\exp(-1/Kn))$ for discrete particle. As a result, the UGKWP provides an optimal modeling for capturing the particle phase in terms of physical accuracy and numerical efficiency. In the numerical simulation, the UGKWP does not need any prior division of dilute/dense regions, which makes it suitable for the fluidized bed problem, where the dilute/transition/dense regions instantaneously coexist and are dynamically interconvertible. In this paper, based on the GKS-UGKWP formulation two lab-scale fluidization cases are simulated in 3D and the simulation results are compared with the experimental measurements. The typical heterogeneous flow features of the fluidized bed are well captured and the statistics are in good agreement with experiment data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源