论文标题
N/2平方集成衍生物的H系统和N谐波图的解决方案的规律性
Regularity for solutions of H-systems and n-harmonic maps with n/2 square integrable derivatives
论文作者
论文摘要
我们研究了两个椭圆形系统的弱解决方案的规律性,涉及$ n $ laplacian和右侧的关键非线性:$ h $ - 系统和$ n $ harmonic Maps构成紧凑型riemannian歧管。根据假设解决方案属于$ w^{n/2,2} $的均匀尺寸$ n $,我们证明了它们的连续性。 证明中使用的工具涉及强烈的空间和BMO,以及rivière-uhlenbeck分解(在Morrey空间中进行了估计)。 Coifman-Rochberg-Weiss Commutator定理扮演着重要角色。
We study the regularity of weak solutions for two elliptic systems involving the $n$-Laplacian and a critical nonlinearity in the right hand side: $H$-systems and $n$-harmonic maps into compact Riemannian manifolds. Under the assumptions that the solutions belong to $W^{n/2,2}$ in an even dimension $n$, we prove their continuty. The tools used in the proof involve Hardy spaces and BMO, and the Rivière--Uhlenbeck decomposition (with estimates in Morrey spaces). A prominent role is played by the Coifman--Rochberg--Weiss commutator theorem.