论文标题
具有各向同性增量的高斯随机场的复杂性:带有指数的临界点
Complexity of Gaussian random fields with isotropic increments: critical points with given indices
论文作者
论文摘要
我们研究了汉密尔顿$ x_n(x) +\ frac \ mu2 \ | x \ |^2的景观复杂性,其中$ x_ {n} $是$ \ mathbb r^{n} $上的同型增量的平滑高斯过程。该模型描述了一个统计物理中随机电位的单个粒子。我们在开放式集合中为索引$ k $的平均值的平均级临界点得出渐近公式,因为尺寸$ n $属于无限。在同伴论文中,我们提供相同的分析而没有索引约束。
We study the landscape complexity of the Hamiltonian $X_N(x) +\frac\mu2 \|x\|^2,$ where $X_{N}$ is a smooth Gaussian process with isotropic increments on $\mathbb R^{N}$. This model describes a single particle on a random potential in statistical physics. We derive asymptotic formulas for the mean number of critical points of index $k$ with critical values in an open set as the dimension $N$ goes to infinity. In a companion paper, we provide the same analysis without the index constraint.