论文标题
计算衍射异常作为非线性特征值问题
Computing diffraction anomalies as nonlinear eigenvalue problems
论文作者
论文摘要
当平面电磁波撞击衍射光栅或其他周期结构时,反射和发射波会在不同的辐射通道中从结构中传播。当一个或多个辐射通道中的传出波消失时,会发生衍射异常。零反射,零透射和完美的吸收是衍射异常的重要示例,它们可用于操纵电磁波和光。由于衍射异常仅出现在特定频率和/或波形上,并且可能需要调整结构或材料参数,因此它们相对难以通过标准数值方法找到。可以使用迭代方法,但是需要良好的初始猜测。为了确定给定频率间隔中的所有衍射异常,有必要反复解决许多频率的衍射问题。在本文中,开发了用于计算衍射异常的有效数值方法。该方法依赖于非线性特征值公式用于散射异常,并通过轮廓融合方法解决了非线性特征值问题。提出了涉及圆柱体周期阵列的数值示例,以说明新方法。
When a plane electromagnetic wave impinges upon a diffraction grating or other periodic structures, reflected and transmitted waves propagate away from the structure in different radiation channels. A diffraction anomaly occurs when the outgoing waves in one or more radiation channels vanish. Zero reflection, zero transmission and perfect absorption are important examples of diffraction anomalies, and they are useful for manipulating electromagnetic waves and light. Since diffraction anomalies appear only at specific frequencies and/or wavevectors, and may require the tuning of structural or material parameters, they are relatively difficult to find by standard numerical methods. Iterative methods may be used, but good initial guesses are required. To determine all diffraction anomalies in a given frequency interval, it is necessary to repeatedly solve the diffraction problem for many frequencies. In this paper, an efficient numerical method is developed for computing diffraction anomalies. The method relies on nonlinear eigenvalue formulations for scattering anomalies and solves the nonlinear eigenvalue problems by a contour-integral method. Numerical examples involving periodic arrays of cylinders are presented to illustrate the new method.