论文标题
kpz限制定理
KPZ limit theorems
论文作者
论文摘要
一维相互作用的粒子系统,1+1个随机生长模型和二维定向聚合物定义了2D高度场。 KPZ通用性猜想认为,适当尺度的高度函数会收敛到与大型模型的模型无关的通用随机场。我们调查限制了一些模型定理,并讨论了不同领域中发生的变化。特别是,我们介绍了有关周期域的最新结果。我们还评论可集成的概率模型,可集成的微分方程和普遍性。
One-dimensional interacting particle systems, 1+1 random growth models, and two-dimensional directed polymers define 2d height fields. The KPZ universality conjecture posits that an appropriately scaled height function converges to a model-independent universal random field for a large class of models. We survey limit theorems for a few models and discuss changes that arise in different domains. In particular, we present recent results on periodic domains. We also comment on integrable probability models, integrable differential equations, and universality.