论文标题

II型超新星的基于图的光谱分类

A graph-based spectral classification of Type II supernovae

论文作者

de Souza, Rafael S., Thorp, Stephen, Galbany, Lluís, Ishida, Emille E. O., González-Gaitán, Santiago, Schmitz, Morgan A., Krone-Martins, Alberto, Peters, Christina

论文摘要

鉴于使用强大,解释性和自动化数据驱动的分类方案的时间域天文量不断增加,这是关键的。基于图理论,我们为光谱数据提供了新的数据驱动分类启发式方法。提出了II型超新星(SNE II)的光谱分类方案,该方案是基于相对于$ V $带和高原阶段的最大光的相位相对的相。我们利用一个编译的光学数据集,其中包括145 sne和1595光谱,4000-9000 $ \ overset {\ circ} {\ mathrm {a}} $。我们的分类方法自然会根据其主要光谱特征来识别异常值并安排不同的SNE。我们将我们的方法与现成的UMAP多种学习学习进行了比较,并表明两种策略都与光谱类型的连续变化一致,而不是离散的家庭。自动分类自然反映了II型SNE在最大光周围的快速演变,同时展示其均匀性接近高原阶段的末端。我们开发的方案可能更广泛地适用于其他功能数据的无监督时间序列分类或表征。

Given the ever-increasing number of time-domain astronomical surveys, employing robust, interpretative, and automated data-driven classification schemes is pivotal. Based on graph theory, we present new data-driven classification heuristics for spectral data. A spectral classification scheme of Type II supernovae (SNe II) is proposed based on the phase relative to the maximum light in the $V$ band and the end of the plateau phase. We utilize a compiled optical data set that comprises 145 SNe and 1595 optical spectra in 4000-9000 $\overset{\circ}{\mathrm {A}}$. Our classification method naturally identifies outliers and arranges the different SNe in terms of their major spectral features. We compare our approach to the off-the-shelf umap manifold learning and show that both strategies are consistent with a continuous variation of spectral types rather than discrete families. The automated classification naturally reflects the fast evolution of Type II SNe around the maximum light while showcasing their homogeneity close to the end of the plateau phase. The scheme we develop could be more widely applicable to unsupervised time series classification or characterisation of other functional data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源