论文标题

Darboux系统和KP层次结构的Lagrangian 3形结构

Lagrangian 3-form structure for the Darboux system and the KP hierarchy

论文作者

Nijhoff, Frank W

论文摘要

建立了Lagrangian多形结构,用于描述正交曲线坐标系统的Darboux系统的概括。过去已经证明,这种耦合PDE系统实际上是对整个Kadomtsev-Petviashvili(KP)层次结构的编码,就所谓的MIWA变量而言。因此,在提供对这种多维一致的系统的拉格朗日描述时,相当于连续的KP系统的新拉格朗日3级结构。讨论了对矩阵(也称为非亚洲)KP系统的概括。

A Lagrangian multiform structure is established for a generalisation of the Darboux system describing orthogonal curvilinear coordinate systems. It has been shown in the past that this system of coupled PDEs is in fact an encoding of the entire Kadomtsev-Petviashvili (KP) hierarchy in terms so-called Miwa variables. Thus, in providing a Lagrangian description of this multidimensionally consistent system amounts to a new Lagrangian 3-form structure for the continuous KP system. A generalisation to the matrix (also known as non-Abelian) KP system is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源