论文标题

越好的越好:通过自适应修剪重新思考医疗图像分割中的变压器

The Lighter The Better: Rethinking Transformers in Medical Image Segmentation Through Adaptive Pruning

论文作者

Lin, Xian, Yu, Li, Cheng, Kwang-Ting, Yan, Zengqiang

论文摘要

视觉变压器最近在医疗图像分析领域引发了新的浪潮,因为它们在各种计算机视觉任务上的表现出色。但是,最近的基于混合/变压器的方法主要集中于变形金刚在捕获长期依赖性方面的好处,同时忽略了其艰巨的计算复杂性,高培训成本和冗余依赖性的问题。在本文中,我们建议对变形金刚进行自适应修剪进行医学图像分割,并提出轻巧有效的混合网络表达式。据我们所知,这是针对医疗图像分析任务修剪变压器修剪的第一项工作。 Apformer的主要特征主要是自我监督的自我注意力(SSA),以改善依赖性建立,高斯 - 优先相对位置嵌入(GRPE)的收敛性,以促进学习位置信息的学习,并适应修剪以消除冗余计算和感知信息。具体而言,SSA和GRPE将良好的依赖分布和高斯热图分布分别视为自我注意事项和嵌入位置的先验知识,以减轻变压器的训练并为以下修剪操作奠定坚实的基础。然后,通过调整栅极控制参数以降低复杂性和性能改善,可以执行自适应变压器修剪,无论是查询和依赖性方面的修剪,都可以执行。在两个广泛使用的数据集上进行了广泛的实验,证明了Apformer对具有更少参数和较低GFLOPS的最新方法的显着分割性能。更重要的是,通过消融研究,我们证明了自适应修剪可以作为插头-N-play模块,以改善其他基于混合/变压器的方法。代码可从https://github.com/xianlin7/apformer获得。

Vision transformers have recently set off a new wave in the field of medical image analysis due to their remarkable performance on various computer vision tasks. However, recent hybrid-/transformer-based approaches mainly focus on the benefits of transformers in capturing long-range dependency while ignoring the issues of their daunting computational complexity, high training costs, and redundant dependency. In this paper, we propose to employ adaptive pruning to transformers for medical image segmentation and propose a lightweight and effective hybrid network APFormer. To our best knowledge, this is the first work on transformer pruning for medical image analysis tasks. The key features of APFormer mainly are self-supervised self-attention (SSA) to improve the convergence of dependency establishment, Gaussian-prior relative position embedding (GRPE) to foster the learning of position information, and adaptive pruning to eliminate redundant computations and perception information. Specifically, SSA and GRPE consider the well-converged dependency distribution and the Gaussian heatmap distribution separately as the prior knowledge of self-attention and position embedding to ease the training of transformers and lay a solid foundation for the following pruning operation. Then, adaptive transformer pruning, both query-wise and dependency-wise, is performed by adjusting the gate control parameters for both complexity reduction and performance improvement. Extensive experiments on two widely-used datasets demonstrate the prominent segmentation performance of APFormer against the state-of-the-art methods with much fewer parameters and lower GFLOPs. More importantly, we prove, through ablation studies, that adaptive pruning can work as a plug-n-play module for performance improvement on other hybrid-/transformer-based methods. Code is available at https://github.com/xianlin7/APFormer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源