论文标题
Sierpiński垫圈上的分形多项式和一些尺寸结果
Fractal polynomials On the Sierpiński gasket and some dimensional results
论文作者
论文摘要
在本文中,我们探讨了与分形算子相关的一些重要特性,这些属性在Sierpiński垫圈(SG)上定义的所有连续功能的空间上。我们还提供了一些与分形多项式约束近似相关的结果,并研究了SG上定义的分形多项式的最佳近似特性。此外,我们讨论了有关SG上定义的多项式类别的一些评论,并尝试估计通过使用函数振荡在SG上定义的$α$分形函数的图形的分形维度。
In this paper, we explore some significant properties associated with a fractal operator on the space of all continuous functions defined on the Sierpiński Gasket (SG). We also provide some results related to constrained approximation with fractal polynomials and study the best approximation properties of fractal polynomials defined on the SG. Further we discuss some remarks on the class of polynomials defined on the SG and try to estimate the fractal dimensions of the graph of $α$- fractal function defined on the SG by using the oscillation of functions.