论文标题

细胞细胞粘附的局部连续体模型

A local continuum model of cell-cell adhesion

论文作者

Falcó, Carles, Baker, Ruth E., Carrillo, José A.

论文摘要

细胞 - 细胞粘附是调节组织发育,稳态和修复过程中总体细胞迁移的最基本机制之一,使细胞群体可以自组织并最终形成并保持复杂的组织形状。细胞通过突起或丝状菌的形成相互作用,并通过结合细胞表面蛋白来粘附于其他细胞。然后,所产生的粘合力与细胞的大小和形状有关,并且通常,连续模型通过非局部吸引人的相互作用表示它们。在本文中,我们提出了一个新的细胞细胞粘附连续模型,该模型可以从短距离相互作用极限的一般非本地模型中得出。这个新模型是局部的,类似于薄膜类型方程的系统,各种模型参数起着不同细胞种群之间表面紧张的作用。一个和二维中的数值模拟表明,局部模型保持了在实验和先前使用的非局部模型中观察到的细胞分类模式的多样性。此外,它还具有具有显式固定溶液的优点,该解决方案提供了模型参数与差分粘附假设之间的直接联系。

Cell-cell adhesion is one the most fundamental mechanisms regulating collective cell migration during tissue development, homeostasis and repair, allowing cell populations to self-organize and eventually form and maintain complex tissue shapes. Cells interact with each other via the formation of protrusions or filopodia and they adhere to other cells through binding of cell surface proteins. The resulting adhesive forces are then related to cell size and shape and, often, continuum models represent them by nonlocal attractive interactions. In this paper, we present a new continuum model of cell-cell adhesion which can be derived from a general nonlocal model in the limit of short-range interactions. This new model is local, resembling a system of thin-film type equations, with the various model parameters playing the role of surface tensions between different cell populations. Numerical simulations in one and two dimensions reveal that the local model maintains the diversity of cell sorting patterns observed both in experiments and in previously used nonlocal models. In addition, it also has the advantage of having explicit stationary solutions, which provides a direct link between the model parameters and the differential adhesion hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源