论文标题
完全可解决的有限单纯晶格在任意维度上具有开放边界
Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions
论文作者
论文摘要
有限的单纯形晶格模型在研究沮丧的磁系统和非富特定定位现象时,在不同的科学分支中,例如在凝聚的物理学中;或在化学中描述混合物实验时。 $ n $ -simplex代表$ n $尺寸中最简单的多型,例如,分别在一个,两个和三个维度中的线段,三角形和四面体。在这项工作中,我们表明,可以从二足性波音系统的高阶现场 - 弹药空间构建各种完全可解决的,一般的非Hermitian,$ n $ n $ simplex晶格模型{带有开放边界}。也就是说,我们证明了这样的$ n $ simplex晶格可以通过减小高分化迭代的多层链的尺寸(k> n)$ - 尺寸来形成,这些链自然而然地出现在野外摩擦空间中。我们的发现表明,骨气系统的野外训练空间提供了一个多功能平台,用于模拟具有非热门现象的真实空间$ n $ n $ simplex lattices,并对表现出相似复杂性的多体系统的结构产生有价值的见解。在各种实际应用中,这些单纯形结构可以为实现离散的分数转换提供物理设置,这是量子和经典信号处理的必不可少的工具。
Finite simplex lattice models are used in different branches of science, e.g., in condensed matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An $n$-simplex represents the simplest possible polytope in $n$ dimensions, e.g., a line segment, a triangle, and a tetrahedron in one, two, and three dimensions, respectively. In this work, we show that various fully solvable, in general non-Hermitian, $n$-simplex lattice models {with open boundaries} can be constructed from the high-order field-moments space of quadratic bosonic systems. Namely, we demonstrate that such $n$-simplex lattices can be formed by a dimensional reduction of highly-degenerate iterated polytope chains in $(k>n)$-dimensions, which naturally emerge in the field-moments space. Our findings indicate that the field-moments space of bosonic systems provides a versatile platform for simulating real-space $n$-simplex lattices exhibiting non-Hermitian phenomena, and yield valuable insights into the structure of many-body systems exhibiting similar complexity. Amongst a variety of practical applications, these simplex structures can offer a physical setting for implementing the discrete fractional Fourier transform, an indispensable tool for both quantum and classical signal processing.