论文标题
Chern-Simons理论的分解三维理论
Decomposition in Chern-Simons theories in three dimensions
论文作者
论文摘要
在本文中,我们在三维Chern-Simons理论的背景下讨论分解。具体而言,我们认为,一种具有无遮盖作用的一式对称性的Chern-Simons理论等同于Chern-Simons理论的脱节结合,在Bockstein的同型同态下,在经典程度的特征性类别的Bockstein同构中具有离散的Theta角耦合。在具有边界的三个manifolds上,我们表明散装离散的theta角(与束特征类耦合)映射到边界Orbifolds中离散扭转的选择。我们使用它来验证批量的三维Chern-Simons分解在边界上的分解减少到二维(WZW)Orbifolds的已知分解,从而对我们的建议提供了强有力的一致性测试。
In this paper we discuss decomposition in the context of three-dimensional Chern-Simons theories. Specifically, we argue that a Chern-Simons theory with a gauged noneffectively-acting one-form symmetry is equivalent to a disjoint union of Chern-Simons theories, with discrete theta angles couplings to the image under a Bockstein homomorphism of a canonical degree-two characteristic class. On three-manifolds with boundary, we show that the bulk discrete theta angles (coupling to bundle characteristic classes) are mapped to choices of discrete torsion in boundary orbifolds. We use this to verify that the bulk three-dimensional Chern-Simons decomposition reduces on the boundary to known decompositions of two-dimensional (WZW) orbifolds, providing a strong consistency test of our proposal.