论文标题

歧管插值轨迹推理的最佳传输流量

Manifold Interpolating Optimal-Transport Flows for Trajectory Inference

论文作者

Huguet, Guillaume, Magruder, D. S., Tong, Alexander, Fasina, Oluwadamilola, Kuchroo, Manik, Wolf, Guy, Krishnaswamy, Smita

论文摘要

我们提出了一种称为歧管插值最佳传输流量(MIOFLOW)的方法,该方法从零星时间点上采集的静态快照样品中学习随机,连续的种群动力学。 Mioflow结合了动态模型,流动学习和通过训练神经普通微分方程(神经ode)的最佳运输,以在静态种群快照之间插值,以通过具有歧管地面距离的最佳运输来惩罚。此外,我们通过在自动编码器的潜在空间中运行我们称为Geodesic AutoCododer(GAE)来确保流量遵循几何形状。在GAE中,正规化了点之间的潜在空间距离,以匹配我们定义的数据歧管上新型的多尺度测量距离。我们表明,这种方法优于标准化流,Schrödinger桥和其他生成模型,这些模型旨在从人群之间插值来从噪声流到数据。从理论上讲,我们将这些轨迹与动态最佳传输联系起来。我们通过分叉和合并评估了模拟数据的方法,以及来自胚胎身体分化的SCRNA-seq数据以及急性髓性白血病治疗。

We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schrödinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源