论文标题

使用微分几何形状正规化NERF

Regularization of NeRFs using differential geometry

论文作者

Ehret, Thibaud, Marí, Roger, Facciolo, Gabriele

论文摘要

神经辐射场(或NERF)代表了新的视图合成领域的突破和从多视图图像收集中复杂场景的3D建模。最近的许多作品表明,通过正规化使NERF模型更加健壮的重要性,以便训练可能不一致和/或非常稀疏的数据。在这项工作中,我们探讨了差异几何形状如何提供优雅的正则化工具,以训练NERF样模型,这些模型经过修改,以表示连续和无限可区分的功能。特别是,我们提出了一个通用框架,用于使不同类型的NERF观测值正规,以改善具有挑战性的条件下的性能。我们还展示了如何通过高斯或平均曲率来培养相同的形式主义来培养表面的规律性。

Neural radiance fields, or NeRF, represent a breakthrough in the field of novel view synthesis and 3D modeling of complex scenes from multi-view image collections. Numerous recent works have shown the importance of making NeRF models more robust, by means of regularization, in order to train with possibly inconsistent and/or very sparse data. In this work, we explore how differential geometry can provide elegant regularization tools for robustly training NeRF-like models, which are modified so as to represent continuous and infinitely differentiable functions. In particular, we present a generic framework for regularizing different types of NeRFs observations to improve the performance in challenging conditions. We also show how the same formalism can also be used to natively encourage the regularity of surfaces by means of Gaussian or mean curvatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源