论文标题

从一个简单的尖峰网络中出现多波段振荡

Multi-band oscillations emerge from a simple spiking network

论文作者

Wu, Tianyi, Cai, Yuhang, Zhang, Ruilin, Wang, Zhongyi, Tao, Louis, Xiao, Zhuo-Cheng

论文摘要

在大脑中,连贯的神经元活性通常以多个频带同时出现,例如,作为α(8-12 Hz),β(12.5-30 Hz),伽马(30-120 Hz)振荡的组合。这些节奏被认为是信息处理和认知功能的基础,并受到了严格的实验和理论审查。计算建模为尖峰神经元相互作用的网络级振荡行为的出现提供了一个框架。但是,由于高度复发的尖峰种群之间的强烈非线性相互作用,理论上很少研究多个频带中皮质节律之间的相互作用。许多研究调用了多个生理时间尺度或振荡输入,以在多带中产生节奏。在这里,我们证明了一个简单网络中多波段振荡的出现,该网络由一个兴奋性和一个抑制性神经元种群组成,由恒定输入驱动。首先,我们构建了一个数据驱动的庞加莱段理论,用于对单频振荡分叉分为多个频段的稳健数值观察。然后,我们开发了随机,非线性,高维神经元网络的模型减少,以捕获多波段动力学的外观和理论上的基础分叉。此外,当在降低的状态空间内观察时,我们的分析揭示了在低维动力歧管上分叉的保守几何特征。这些结果表明,多波段振荡的出现背后的一种简单的几何机制,而没有吸引振荡输入或多个突触或神经元时间标准。因此,我们的工作表明,激发与抑制作用的动态,图案化神经元活动背后的随机竞争方案未开发。

In the brain, coherent neuronal activities often appear simultaneously in multiple frequency bands, e.g., as combinations of alpha (8-12 Hz), beta (12.5-30 Hz), gamma (30-120 Hz) oscillations, among others. These rhythms are believed to underlie information processing and cognitive functions and have been subjected to intense experimental and theoretical scrutiny. Computational modeling has provided a framework for the emergence of network-level oscillatory behavior from the interaction of spiking neurons. However, due to the strong nonlinear interactions between highly recurrent spiking populations, the interplay between cortical rhythms in multiple frequency bands has rarely been theoretically investigated. Many studies invoke multiple physiological timescales or oscillatory inputs to produce rhythms in multi-bands. Here we demonstrate the emergence of multi-band oscillations in a simple network consisting of one excitatory and one inhibitory neuronal population driven by constant input. First, we construct a data-driven, Poincaré section theory for robust numerical observations of single-frequency oscillations bifurcating into multiple bands. Then we develop model reductions of the stochastic, nonlinear, high-dimensional neuronal network to capture the appearance of multi-band dynamics and the underlying bifurcations theoretically. Furthermore, when viewed within the reduced state space, our analysis reveals conserved geometrical features of the bifurcations on low-dimensional dynamical manifolds. These results suggest a simple geometric mechanism behind the emergence of multi-band oscillations without appealing to oscillatory inputs or multiple synaptic or neuronal timescales. Thus our work points to unexplored regimes of stochastic competition between excitation and inhibition behind the generation of dynamic, patterned neuronal activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源