论文标题
在被困在液体界面上的球形颗粒上拖动力
Drag force on spherical particles trapped at a liquid interface
论文作者
论文摘要
在各种应用中遇到了分隔两个不混溶的流体的界面上的颗粒动力学。在这里,我们提出了对流体运动的渐近和数值研究,过去的球形颗粒附着在均匀毛细血管数的极限和90度接触角的较小偏差的极限和小偏差的情况下,该界面附着在可变形的界面上。在恒定的三相接触角的假设下,我们计算围绕隔离粒子和粒子对周围的界面变形。将Lorentz相互定理应用于与球形颗粒相对应的零阶近似,并在平面界面上使用毛细管数和校正接触角的首次校正,使我们能够在Zeroth近似近似值和校正变形方面获得显式分析表达式。将阻力系数计算为三相接触角的函数,两种流体的粘度比,键数和颗粒之间的分离距离。另外,计算由于界面变形而作用在颗粒上的毛细作用。
The dynamics of particles attached to an interface separating two immiscible fluids are encountered in a wide variety of applications. Here we present a combined asymptotic and numerical investigation of the fluid motion past spherical particles attached to a deformable interface undergoing uniform creeping flows in the limit of small Capillary number and small deviation of the contact angle from 90 degrees. Under the assumption of a constant three-phase contact angle, we calculate the interfacial deformation around an isolated particle and a particle pair. Applying the Lorentz reciprocal theorem to the zeroth-order approximation corresponding to spherical particles at a flat interface and the first correction in Capillary number and correction contact angle allows us to obtain explicit analytical expressions for the hydrodynamic drag in terms of the zeroth-order approximations and the correction deformations. The drag coefficients are computed as a function of the three-phase contact angle, the viscosity ratio of the two fluids, the Bond number, and the separation distance between the particles. In addition, the capillary force acting on the particles due to the interfacial deformation is calculated.