论文标题

PVT-COV19D:用于COVID-19诊断的金字塔视觉变压器

PVT-COV19D: Pyramid Vision Transformer for COVID-19 Diagnosis

论文作者

Zheng, Lilang, Fang, Jiaxuan, Tang, Xiaorun, Li, Hanzhang, Fan, Jiaxin, Wang, Tianyi, Zhou, Rui, Yan, Zhaoyan

论文摘要

随着Covid-19的爆发,近年来已经出现了大量相关研究。我们提出了一个基于肺CT扫描图像的自动COVID-19诊断框架,即PVT-COV19D。为了适应图像输入的不同维度,我们首先使用变压器模型对图像进行了分类,然后根据正态分布对数据集中采样图像,并将采样结果馈送到修改的PVTV2模型中进行训练。 COV19-CT-DB数据集的大量实验证明了该方法的有效性。

With the outbreak of COVID-19, a large number of relevant studies have emerged in recent years. We propose an automatic COVID-19 diagnosis framework based on lung CT scan images, the PVT-COV19D. In order to accommodate the different dimensions of the image input, we first classified the images using Transformer models, then sampled the images in the dataset according to normal distribution, and fed the sampling results into the modified PVTv2 model for training. A large number of experiments on the COV19-CT-DB dataset demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源