论文标题
拓扑结论:将注意力转变为自然语言处理的拓扑
The Topological BERT: Transforming Attention into Topology for Natural Language Processing
论文作者
论文摘要
近年来,变压器模型的引入引发了自然语言处理(NLP)的革命。伯特(Bert)是仅使用注意机制的第一批文本编码者之一,而没有任何复发部分来实现许多NLP任务的最新结果。 本文使用拓扑数据分析介绍了文本分类器。我们将BERT的注意图转换为注意图作为该分类器的唯一输入。该模型可以解决诸如将垃圾邮件与HAM消息区分开的任务,认识到句子是语法正确的,还是将电影评论评估为负面还是正面。它与BERT基线相当地执行,并在某些任务上胜过它。 此外,我们提出了一种新方法,以减少拓扑分类器考虑的BERT注意力头的数量,这使我们能够修剪从144的头部降低到只有10个,而性能没有降低。我们的工作还表明,拓扑模型比原始的BERT模型表现出对对抗性攻击的鲁棒性,该模型在修剪过程中维持。据我们所知,这项工作是第一个在NLP背景下以对抗性攻击的基于拓扑的模型。
In recent years, the introduction of the Transformer models sparked a revolution in natural language processing (NLP). BERT was one of the first text encoders using only the attention mechanism without any recurrent parts to achieve state-of-the-art results on many NLP tasks. This paper introduces a text classifier using topological data analysis. We use BERT's attention maps transformed into attention graphs as the only input to that classifier. The model can solve tasks such as distinguishing spam from ham messages, recognizing whether a sentence is grammatically correct, or evaluating a movie review as negative or positive. It performs comparably to the BERT baseline and outperforms it on some tasks. Additionally, we propose a new method to reduce the number of BERT's attention heads considered by the topological classifier, which allows us to prune the number of heads from 144 down to as few as ten with no reduction in performance. Our work also shows that the topological model displays higher robustness against adversarial attacks than the original BERT model, which is maintained during the pruning process. To the best of our knowledge, this work is the first to confront topological-based models with adversarial attacks in the context of NLP.