论文标题
具有动态变异轨迹模型的超声心动图中的异常检测
Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models
论文作者
论文摘要
我们提出了一种用于超声心动图视频的新型异常检测方法。引入的方法利用了心脏周期的周期性,学习了各种潜在轨迹模型(TVAE)的三种变体。虽然前两个变体(TVAE-C和TVAE-R)型号严格的心脏周期性动作,但第三个(TVAE-S)更一般,并且可以在整个视频中进行空间表示。所有模型均经过培训,该样品的健康样本是婴儿超声心动图视频的新型内部数据集的培训,该数据集由多个室内视图组成,以了解健康人群的规范性。在推断期间,执行最大后验(MAP)异常检测,以检测我们数据集中的分布样品。提出的方法可靠地识别出严重的先天性心脏缺陷,例如Ebstein的异常或发光复合物。此外,当检测肺动脉高压和右心室扩张时,它可以通过标准变异自动编码器实现优于基于地图的异常检测。最后,我们证明了所提出的方法可以通过热图通过热图强调与异常心脏结构相对应的区域来解释其输出。
We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn three variants of a variational latent trajectory model (TVAE). While the first two variants (TVAE-C and TVAE-R) model strict periodic movements of the heart, the third (TVAE-S) is more general and allows shifts in the spatial representation throughout the video. All models are trained on the healthy samples of a novel in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shone-complex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders when detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method enables interpretable explanations of its output through heatmaps highlighting the regions corresponding to anomalous heart structures.