论文标题
边界的全球规律性,用于椭圆系统的非均匀性
Borderline global regularity for nonuniformly elliptic systems
论文作者
论文摘要
我们为零边界条件的非均匀的,非固定的椭圆系统建立了尖锐的全球规律性结果。特别是,我们在洛伦兹(Lorentz)在强迫术语上的洛伦兹(Lorentz)假设下的Lipschitz连续性中无处不在,从而积极地解决了在\ cite {bdms}中提出的最佳问题。
We establish sharp global regularity results for solutions to nonhomogeneous, nonunifomrly elliptic systems with zero boundary conditions. In particular, we obtain everywhere Lipschitz continuity under borderline Lorentz assumptions on the forcing term, thus positively settling the optimality issue raised in \cite{bdms}.