论文标题

以理解为导向的强大机器阅读理解模型

An Understanding-Oriented Robust Machine Reading Comprehension Model

论文作者

Ren, Feiliang, Liu, Yongkang, Li, Bochao, Liu, Shilei, Wang, Bingchao, Wang, Jiaqi, Liu, Chunchao, Ma, Qi

论文摘要

尽管现有的机器阅读理解模型在许多数据集上取得了迅速的进展,但它们远非强劲。在本文中,我们提出了一个面向理解的机器阅读理解模型,以解决三种鲁棒性问题,这些问题过于敏感,稳定性和泛化。具体来说,我们首先使用自然语言推理模块来帮助模型了解输入问题的准确语义含义,以解决过度敏感性和稳定性的问题。然后在机器阅读理解模块中,我们提出了一种内存引导的多头注意方法,该方法可以进一步很好地理解输入问题和段落的语义含义。第三,我们提出了一种多语言学习机制来解决概括问题。最后,这些模块与基于多任务学习的方法集成在一起。我们在三个基准数据集上评估了我们的模型,这些基准数据集旨在测量模型的稳健性,包括DureDer(鲁棒)和两个与小队相关的数据集。广泛的实验表明,我们的模型可以很好地解决上述三种鲁棒性问题。而且,即使在某些极端和不公平的评估下,它也比所有这些数据集中所有这些数据集的最先进模型的结果要好得多。我们工作的源代码可在以下网址提供:https://github.com/neukg/robustmrc。

Although existing machine reading comprehension models are making rapid progress on many datasets, they are far from robust. In this paper, we propose an understanding-oriented machine reading comprehension model to address three kinds of robustness issues, which are over sensitivity, over stability and generalization. Specifically, we first use a natural language inference module to help the model understand the accurate semantic meanings of input questions so as to address the issues of over sensitivity and over stability. Then in the machine reading comprehension module, we propose a memory-guided multi-head attention method that can further well understand the semantic meanings of input questions and passages. Third, we propose a multilanguage learning mechanism to address the issue of generalization. Finally, these modules are integrated with a multi-task learning based method. We evaluate our model on three benchmark datasets that are designed to measure models robustness, including DuReader (robust) and two SQuAD-related datasets. Extensive experiments show that our model can well address the mentioned three kinds of robustness issues. And it achieves much better results than the compared state-of-the-art models on all these datasets under different evaluation metrics, even under some extreme and unfair evaluations. The source code of our work is available at: https://github.com/neukg/RobustMRC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源