论文标题

汽车软件工程和在线评估的贝叶斯因果关系

Bayesian causal inference in automotive software engineering and online evaluation

论文作者

Liu, Yuchu, Mattos, David Issa, Bosch, Jan, Olsson, Helena Holmström, Lantz, Jonn

论文摘要

长期以来,随机现场实验(例如A/B测试)一直是评估软件更改的黄金标准。在汽车域中,运行随机场实验并不总是需要,可能甚至是道德。面对这种局限性,我们开发了一条框架船(用于显而易见的测试的贝叶斯因果建模),利用观察性研究与贝叶斯因果关系结合使用,以了解复杂的自动软件更新的现实影响,并帮助软件开发组织得出因果关系。在这项研究中,我们在贝叶斯框架及其相应案例中介绍了三种因果推理模型,以解决三种常见的汽车领域软件评估挑战。我们与行业合作者一起开发了船框架,并通过对大型车队进行实证研究来展示因果推断的潜力。此外,我们将因果假设理论与他们在实践中的含义联系起来,旨在提供有关如何在汽车软件工程中应用因果模型的全面指南。当我们无法访问整个用户群时,我们将贝叶斯倾向得分匹配应用于产生平衡的控制和治疗组,即贝叶斯回归不连续性设计,以识别依赖于协变量的治疗分配和局部治疗效果,以及贝叶斯差异的差异差异,用于导致治疗效果的导致治疗效果和隐式控制不可见点的混杂因素。每个示范案例中的每一个都在实践中的基础,并且是随机化不可行的情况。借助船框架,我们无需完全随机的实验即可在汽车域中启用在线软件评估。

Randomised field experiments, such as A/B testing, have long been the gold standard for evaluating software changes. In the automotive domain, running randomised field experiments is not always desired, possible, or even ethical. In the face of such limitations, we develop a framework BOAT (Bayesian causal modelling for ObvservAtional Testing), utilising observational studies in combination with Bayesian causal inference, in order to understand real-world impacts from complex automotive software updates and help software development organisations arrive at causal conclusions. In this study, we present three causal inference models in the Bayesian framework and their corresponding cases to address three commonly experienced challenges of software evaluation in the automotive domain. We develop the BOAT framework with our industry collaborator, and demonstrate the potential of causal inference by conducting empirical studies on a large fleet of vehicles. Moreover, we relate the causal assumption theories to their implications in practise, aiming to provide a comprehensive guide on how to apply the causal models in automotive software engineering. We apply Bayesian propensity score matching for producing balanced control and treatment groups when we do not have access to the entire user base, Bayesian regression discontinuity design for identifying covariate dependent treatment assignments and the local treatment effect, and Bayesian difference-in-differences for causal inference of treatment effect overtime and implicitly control unobserved confounding factors. Each one of the demonstrative case has its grounds in practise, and is a scenario experienced when randomisation is not feasible. With the BOAT framework, we enable online software evaluation in the automotive domain without the need of a fully randomised experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源