论文标题

WS-SNAPSHOT:用于宽场和大型成像的有效算法

WS-Snapshot: An effective algorithm for wide-field and large-scale imaging

论文作者

Xie, Yangfan, Wang, Feng, Deng, Hui, Mei, Ying, Lu, Ying-He Celeste, Hodosan, Gabriella, Stolyarov, Vladislav, Smirnov, Oleg, Li, Xiaofeng, Cornwell, Tim

论文摘要

平方公里阵列(SKA)是世界上最大的无线电干涉仪。高精度,宽大和大型成像显着挑战了SKA科学数据处理器(SDP)的构建。我们提出了一种基于改进的W堆栈和快照的混合成像方法。通过拟合快照$ UV $平面来减少W范围,从而有效地增强了改进的W堆积算法的性能。我们提出了WS-Snapshot的详细实现。通过全尺度SKA1-LOW模拟,我们介绍了不同参数案例的成像性能和成像质量结果。结果表明,WS-SNAPSHOT方法可以实现更有效的分布处理处理,并大大减少了在可接受的精度范围内的计算时间开销,这对于随后的SKA科学研究至关重要。

The Square Kilometre Array (SKA) is the largest radio interferometer under construction in the world. The high accuracy, wide-field and large size imaging significantly challenge the construction of the Science Data Processor (SDP) of SKA. We propose a hybrid imaging method based on improved W-Stacking and snapshots. The w range is reduced by fitting the snapshot $uv$ plane, thus effectively enhancing the performance of the improved W-Stacking algorithm. We present a detailed implementation of WS-Snapshot. With full-scale SKA1-LOW simulations, we present the imaging performance and imaging quality results for different parameter cases. The results show that the WS-Snapshot method enables more efficient distributed processing and significantly reduces the computational time overhead within an acceptable accuracy range, which would be crucial for subsequent SKA science studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源