论文标题
可靠的无线AI的强大贝叶斯学习:框架和应用
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
论文作者
论文摘要
这项工作仔细研究了传统的机器学习方法通过可靠性和鲁棒性的镜头应用于无线通信问题。深度学习技术采用了常见的框架,并已知提供校准较差的决策,这些决策不会再现由于培训数据规模的限制而导致的真正不确定性。贝叶斯学习原则上能够解决这一缺点,但实际上,模型错误指定和异常值的存在损害。在无线通信设置中,这两个问题都普遍存在,其中机器学习模型的能力受资源限制的影响,培训数据受噪声和干扰的影响。在这种情况下,我们探讨了强大的贝叶斯学习框架的应用。经过辅助贝叶斯学习的教程式介绍后,我们就准确性,校准和对异常值的鲁棒性和不指定性的稳健性无线沟通问题展示了强大的贝叶斯学习的优点。
This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification.