论文标题

通过层次动态上下文特征映射SDRTV-TO-HDRTV

SDRTV-to-HDRTV via Hierarchical Dynamic Context Feature Mapping

论文作者

He, Gang, Xu, Kepeng, Xu, Li, Wu, Chang, Sun, Ming, Wen, Xing, Tai, Yu-Wing

论文摘要

在这项工作中,我们将SDR视频的任务介绍给HDR视频(SDRTV-TO-HDRTV)。先前的方法对SDRTV至HDRTV使用全局功能调制。特征调制量表并移动原始特征空间中的特征,该功能空间的映射功能有限。此外,由于SDR帧的不同区域的亮度差异,全局图像映射无法恢复HDR帧中的细节。为了解决上诉,我们提出了一个两阶段的解决方案。第一阶段是分层动态上下文特征映射(HDCFM)模型。 HDCFM通过层次特征调制(HME和HM)模块和动态上下文特征转换(DCT)模块来了解SDR框架到HDR框架映射函数。 HME估计特征调制向量,HM能够进行层次特征调制,由串联的全局特征调制和本地特征调制组成,并且能够自适应局部图像特征的自适应映射。 DCT模块与上下文结合使用特征转换模块,该模块能够自适应地生成特征转换矩阵以进行特征映射。与简单的功能缩放和移动相比,DCT模块可以将功能映射到新的功能空间中,因此具有更出色的功能映射功能。在第二阶段,我们引入了基于斑块鉴别的上下文生成模型PDCG,以获得过度暴露区域的主观质量增强。 PDCG可以解决该模型由于图像过度曝光区域的比例而具有挑战性的问题。提出的方法可以实现最新的目标和主观质量结果。具体而言,HDCFM在约100K的参数下达到0.81 dB的PSNR增益。参数的数量是先前最新方法的1/14。测试代码将很快发布。

In this work, we address the task of SDR videos to HDR videos(SDRTV-to-HDRTV). Previous approaches use global feature modulation for SDRTV-to-HDRTV. Feature modulation scales and shifts the features in the original feature space, which has limited mapping capability. In addition, the global image mapping cannot restore detail in HDR frames due to the luminance differences in different regions of SDR frames. To resolve the appeal, we propose a two-stage solution. The first stage is a hierarchical Dynamic Context feature mapping (HDCFM) model. HDCFM learns the SDR frame to HDR frame mapping function via hierarchical feature modulation (HME and HM ) module and a dynamic context feature transformation (DCT) module. The HME estimates the feature modulation vector, HM is capable of hierarchical feature modulation, consisting of global feature modulation in series with local feature modulation, and is capable of adaptive mapping of local image features. The DCT module constructs a feature transformation module in conjunction with the context, which is capable of adaptively generating a feature transformation matrix for feature mapping. Compared with simple feature scaling and shifting, the DCT module can map features into a new feature space and thus has a more excellent feature mapping capability. In the second stage, we introduce a patch discriminator-based context generation model PDCG to obtain subjective quality enhancement of over-exposed regions. PDCG can solve the problem that the model is challenging to train due to the proportion of overexposed regions of the image. The proposed method can achieve state-of-the-art objective and subjective quality results. Specifically, HDCFM achieves a PSNR gain of 0.81 dB at a parameter of about 100K. The number of parameters is 1/14th of the previous state-of-the-art methods. The test code will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源