论文标题
瑞士德语对文本系统评估
Swiss German Speech to Text system evaluation
论文作者
论文摘要
我们对瑞士德语的四个市售语音到文本(STT)系统进行了深入评估。在本报告中,系统被匿名化,并称为系统A-D。我们将这四个系统与我们的STT模型进行了比较,该模型之后称为FHNW,并提供了有关我们如何训练模型的详细信息。为了评估模型,我们使用来自不同域的两个STT数据集。瑞士议会语料库(SPC)测试集和新闻领域中的私人数据集,在七个方言区域之间具有均匀分布。我们提供详细的误差分析,以检测三个系统的优势和劣势。该分析受两个测试集的特征的限制。我们的模型在两个数据集上均评分了双语评估研究(BLEU)。在SPC测试集中,我们获得了0.607的BLEU得分,而最佳商业系统的BLEU得分为0.509。在我们的私人测试集中,我们获得的BLEU得分为0.722,最佳商业系统的BLEU得分为0.568。
We present an in-depth evaluation of four commercially available Speech-to-Text (STT) systems for Swiss German. The systems are anonymized and referred to as system a-d in this report. We compare the four systems to our STT model, referred to as FHNW from hereon after, and provide details on how we trained our model. To evaluate the models, we use two STT datasets from different domains. The Swiss Parliament Corpus (SPC) test set and a private dataset in the news domain with an even distribution across seven dialect regions. We provide a detailed error analysis to detect the three systems' strengths and weaknesses. This analysis is limited by the characteristics of the two test sets. Our model scored the highest bilingual evaluation understudy (BLEU) on both datasets. On the SPC test set, we obtain a BLEU score of 0.607, whereas the best commercial system reaches a BLEU score of 0.509. On our private test set, we obtain a BLEU score of 0.722 and the best commercial system a BLEU score of 0.568.