论文标题

重新审视投影率

Projectivity revisited

论文作者

Weitkämper, Felix

论文摘要

从建模和复杂性角度来看,跨不同大小域的统计关系表示的行为已成为研究的焦点领域。绝对地,出现了作为关键特性的分布家族的投射性,确保边际概率与域大小无关。但是,当前使用的形式化假定该域仅以其大小为特征。这项贡献将投影率的概念从域大小索引的分布家族到从数据库中进行扩展数据的函数。这使得投影率可用于采用结构化输入的大量应用程序。我们将有关分配的投影家族的主要已知结果转移到新环境中。这包括对不同统计关系形式主义中投影片段的特征,以及针对分布的投射家族的一般代表定理。此外,我们证明了在无数域上的投影率与分布之间的对应关系,我们用来将其统一和推广到无限域中的统计关系表示。最后,我们使用扩展的投影率概念来定义进一步的加强,我们称之为$σ$ - 标志性,并允许在保留投影率的同时以不同的模式使用相同的表示。

The behaviour of statistical relational representations across differently sized domains has become a focal area of research from both a modelling and a complexity viewpoint.Recently, projectivity of a family of distributions emerged as a key property, ensuring that marginal probabilities are independent of the domain size. However, the formalisation used currently assumes that the domain is characterised only by its size. This contribution extends the notion of projectivity from families of distributions indexed by domain size to functors taking extensional data from a database. This makes projectivity available for the large range of applications taking structured input. We transfer key known results on projective families of distributions to the new setting. This includes a characterisation of projective fragments in different statistical relational formalisms as well as a general representation theorem for projective families of distributions. Furthermore, we prove a correspondence between projectivity and distributions on countably infinite domains, which we use to unify and generalise earlier work on statistical relational representations in infinite domains. Finally, we use the extended notion of projectivity to define a further strengthening, which we call $σ$-projectivity, and which allows the use of the same representation in different modes while retaining projectivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源