论文标题

量子偶极磁铁YB中的旋转激发(babo $ _3 $)$ _ 3 $

Spin excitations in the quantum dipolar magnet Yb(BaBO$_3$)$_3$

论文作者

Jiang, C. Y., Yang, Y. X., Gao, Y. X., Wan, Z. T., Zhu, Z. H., Shiroka, T., Chen, C. S., Wu, Q., Li, X., Jiao, J. C., Chen, K. W., Bao, Y., Tian, Z. M., Shu, L.

论文摘要

我们报告了无序的Yb $^{3+} $三角形晶格YB(Babo $ _3 $)$ _ 3 $的磁化,特异性加热和MUON自旋放松测量结果。磁化实验显示了各向异性磁性特性,其温度为$θ_ {\ perp} = - 1.40 $ 〜k($ h \ perp c $)和$θ_{\ parallel} = -1.16 $ 〜k($ h \ \ h \ parallel c $)从低温数据中确定。在零场的情况下,远程抗铁磁顺序和自旋冷冻的缺失被确认为0.27 K。当施加的磁场$μ_0H> 0.7 $ 〜t时,从低温特异性热测量中观察到了由于地面KRAMER DOBLET的打开而导致的两级Schottky异常。在零字段,$ c _ {\ rm mag}/t $的增加和muon自旋松弛率$λ$低于1〜k是由于电子旋转激发而引起的,这些旋转激发通常存在于量子磁铁中,其中偶极 - 偶极 - 偶极 - 偶极相互作用会产生一种磁性特性。由于场诱导的激发密度的增加,旋转激发也得到了$λ$的异常最大依赖性的支持。我们认为,偶极相互作用是主导的,并在量子磁铁YB(babo $ _3 $)$ _ 3 $中诱导旋转动力学。

We report results of magnetization, specific-heat and muon-spin relaxation measurements on single crystals of disorder-free Yb$^{3+}$ triangular lattice Yb(BaBO$_3$)$_3$. The magnetization experiments show anisotropic magnetic properties with Curie-Weiss temperatures $θ_{\perp}=-1.40$~K ($H \perp c$) and $θ_{\parallel}=-1.16$~K ($H \parallel c$) determined from low temperature data. The absence of both long-range antiferromagnetic order and spin freezing is confirmed down to 0.27 K at zero field. A two-level Schottky anomaly due to the opening of the ground-state Kramers doublet is observed from the low-temperature specific-heat measurements when the applied magnetic fields $μ_0H >0.7$~T. At zero field, the increase of both $C_{\rm mag}/T$ and the muon spin relaxation rate $λ$ below 1~K is due to the electronic spin excitations, which often exist in quantum magnets where dipole-dipole interaction creates an anisotropy of magnetic properties. The spin excitation is also supported by the unusual maximum of field dependence of $λ$ due to the field-induced increase of the density of excitations. We argue that dipolar interaction is dominant and induces the spin dynamics in the quantum magnet Yb(BaBO$_3$)$_3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源