论文标题

在奇迹不变的情况下,自给自足的麦克斯韦 - 切尔尼·西蒙斯孤子

Self-dual Maxwell-Chern-Simons solitons in a parity-invariant scenario

论文作者

De Lima, W. B., De Fabritiis, P.

论文摘要

我们提出了一个自dual偶然性不变$ u(1)\ times u(1)$ maxwell-chern-simons stalar $ \ text {qed} _3 $。我们表明,能量功能允许Bogomol'nyi-type下限,其饱和产生了一阶自偶性方程。我们对该系统进行了详细的分析,讨论其主要特征,并展示与有限能源拓扑涡流和非流行孤子相对应的显式数值解决方案。混合的Chern-simons术语在这里起着重要作用,确保了模型的主要特性,并提出了在冷凝物质中的可能应用。

We present a self-dual parity-invariant $U(1) \times U(1)$ Maxwell-Chern-Simons scalar $\text{QED}_3$. We show that the energy functional admits a Bogomol'nyi-type lower bound, whose saturation gives rise to first order self-duality equations. We perform a detailed analysis of this system, discussing its main features and exhibiting explicit numerical solutions corresponding to finite-energy topological vortices and non-topological solitons. The mixed Chern-Simons term plays an important role here, ensuring the main properties of the model and suggesting possible applications in condensed matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源