论文标题

通过近视自信适应达到最佳的分布式估计

Reaching optimal distributed estimation through myopic self-confidence adaptation

论文作者

Como, Giacomo, Fagnani, Fabio, Proskurnikov, Anton V.

论文摘要

考虑离散时间线性分布的平均动力学,网络中的代理以对共同基础参数(世界状态)的不相关且无偏见的噪声测量开始,并在非基质规则后迭代更新其估计值。具体来说,让每个代理商将她的估算更新为她当前的估计以及网络中邻居的估计组合。由于这种迭代平均,每个代理都获得了世界状态的渐近估计,并且该个体估计的方差取决于代理分配给自我和其他人的权重矩阵。我们研究了游戏理论多目标优化问题,每个代理商都试图以这种凸组合的方式选择自己的自重,以最大程度地减少她对未知参数状态的渐近估计的差异。假设代理商在网络中分配给其邻居的相对影响力保持固定并形成不可还原且可观的相对影响矩阵,我们表征了问题的帕累托前沿以及生成游戏中的Nash Equilibria集。

Consider discrete-time linear distributed averaging dynamics, whereby agents in a network start with uncorrelated and unbiased noisy measurements of a common underlying parameter (state of the world) and iteratively update their estimates following a non-Bayesian rule. Specifically, let every agent update her estimate to a convex combination of her own current estimate and those of her neighbors in the network. As a result of this iterative averaging, each agent obtains an asymptotic estimate of the state of the world, and the variance of this individual estimate depends on the matrix of weights the agents assign to self and to the others. We study a game-theoretic multi-objective optimization problem whereby every agent seeks to choose her self-weight in such a convex combination in a way to minimize the variance of her asymptotic estimate of the state of the unknown parameters. Assuming that the relative influence weights assigned by the agents to their neighbors in the network remain fixed and form an irreducible and aperiodic relative influence matrix, we characterize the Pareto frontier of the problem, as well as the set of Nash equilibria in the resulting game.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源