论文标题

在脑电图中以任务为导向的自我监督学习对异常检测

Task-oriented Self-supervised Learning for Anomaly Detection in Electroencephalography

论文作者

Zheng, Yaojia, Liu, Zhouwu, Mo, Rong, Chen, Ziyi, Zheng, Wei-shi, Wang, Ruixuan

论文摘要

脑电图(EEG)的准确自动分析将在很大程度上有助于临床医生有效监测和诊断各种脑部疾病的患者。与使用标记的疾病脑电图数据进行监督学习相比,可以训练模型以分析特定疾病但无法监测以前看不见的状态,仅基于正常脑电图的异常检测才能检测到新EEG中的任何潜在异常。不同于现有的异常检测策略,这些检测策略在模型开发过程中不考虑任何不可用的异常数据的属性,这里提出了一种以任务为导向的自我监督的学习方法,它可以利用可用的正常脑电图和有关异常EEG的专业知识来训练更有效的特征提取器,以进行随后的探测器的发展。此外,具有较大核的特定两个分支卷积神经网络被设计为特征提取器,因此它可以更容易地提取较大规模和小规模的特征,这些特征通常出现在不可用的异常EEG中。如三个EEG数据集所示,有效设计和训练的功能提取器已证明能够根据正常数据和新EEG的未来异常检测来从EEG提取更好的特征表示以开发异常检测器。该代码可在https://github.com/irining/eeg-ad上找到。

Accurate automated analysis of electroencephalography (EEG) would largely help clinicians effectively monitor and diagnose patients with various brain diseases. Compared to supervised learning with labelled disease EEG data which can train a model to analyze specific diseases but would fail to monitor previously unseen statuses, anomaly detection based on only normal EEGs can detect any potential anomaly in new EEGs. Different from existing anomaly detection strategies which do not consider any property of unavailable abnormal data during model development, a task-oriented self-supervised learning approach is proposed here which makes use of available normal EEGs and expert knowledge about abnormal EEGs to train a more effective feature extractor for the subsequent development of anomaly detector. In addition, a specific two branch convolutional neural network with larger kernels is designed as the feature extractor such that it can more easily extract both larger scale and small-scale features which often appear in unavailable abnormal EEGs. The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs for development of anomaly detector based on normal data and future anomaly detection for new EEGs, as demonstrated on three EEG datasets. The code is available at https://github.com/ironing/EEG-AD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源