论文标题

Asimov:协调参数估计工作流程的框架

Asimov: A framework for coordinating parameter estimation workflows

论文作者

Williams, Daniel, Veitch, John, Chiofalo, Maria Luisa, Schmidt, Patricia, Udall, Richard P., Vajpeji, Avi, Hoy, Charlie

论文摘要

自2015年首次检测到紧凑型二元合并的重力波以来,对高级Ligo和晚期处女座探测器的改进已经将我们的视野扩展到了这些信号的宇宙中。对最新观察运行(O3)的搜索已将检测到的信号数量增加到90,速度约为每周1个。预计未来的观察跑步将进一步增加。贝叶斯对信号的分析可以通过将预测的波形与观察到的数据进行比较,可以揭示融合黑洞和中子星的特性。被检测到的信号数量增殖数量,已部署的方法数量越来越多,并且波形模型的多样性创造了可以考虑的不断扩展的分析数量。 Asimov是一个Python软件包,旨在简化和标准化为大量事件配置这些分析的过程。它已经用于开发三个主要引力波目录出版物中的分析。

Since the first detection in 2015 of gravitational waves from compact binary coalescence, improvements to the Advanced LIGO and Advanced Virgo detectors have expanded our view into the universe for these signals. Searches of the of the latest observing run (O3) have increased the number of detected signals to 90, at a rate of approximately 1 per week. Future observing runs are expected to increase this even further. Bayesian analysis of the signals can reveal the properties of the coalescing black holes and neutron stars by comparing predicted waveforms to the observed data. The proliferating number of detected signals, the increasing number of methods that have been deployed, and the variety of waveform models create an ever-expanding number of analyses that can be considered. Asimov is a python package which is designed to simplify and standardise the process of configuring these analyses for a large number of events. It has already been used in developing analyses in three major gravitational wave catalog publications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源