论文标题

边缘彩色完整图中长度3和4的循环,并在颜色过渡中受到限制

Cycles of length 3 and 4 in edge-colored complete graphs with restrictions in the color transitions

论文作者

Galeana-Sánchez, Hortensia, Hernández-Lorenzana, Felipe, Sánchez-López, Rocío

论文摘要

令$ g $是边缘颜色的图,$ g $的步行据说是正确的彩色步行,如果连续的边缘有不同的颜色,包括第一个和最后一个边缘,以防万一步行关闭。令$ h $成为循环的图表。我们会说图形$ g $是$ h $颜色的图,如果存在函数$ c:e(g)\ longrightarrow v(h)$。 $ g $中的路径$(v_1,\ cdots,v_k)$是$ h $ - $ h $ path时(c(v_1v_2),\ cdots,$ $ $ c(v_ {k-1} v_k)$是$ h $的步行路程v_2),\ cdots,c(v_ {k-1} v_k),$ $ c(v_kv_1),c(v_1 v_2))$是$ h $的步行路。因此,$ h $决定在步行中允许哪些颜色过渡,以便成为$ h $ walk。每当$ h $是一个没有循环的完整图形时,$ h $ walk是一个适当的彩色步行,因此$ h $ - walk是一个更一般的概念。在本文中,我们使用$ h $颜色的完整图,并带有辅助图给出的限制。主要定理给出的条件表明,$ h $颜色的完整图中的每个顶点都包含在长度为3的$ H $周期中,并且在$ h $ cycle的长度为4中。由于主要结果,我们获得了一些众所周知的定理。

Let $G$ be an edge-colored graph, a walk in $G$ is said to be a properly colored walk iff each pair of consecutive edges have different colors, including the first and the last edges in case that the walk be closed. Let $H$ be a graph possible with loops. We will say that a graph $G$ is an $H$-colored graph iff there exists a function $c:E(G)\longrightarrow V(H)$. A path $(v_1,\cdots,v_k)$ in $G$ is an $H$-path whenever $(c(v_1v_2),\cdots,$ $c(v_{k-1}v_k))$ is a walk in $H$, in particular, a cycle $(v_1,\cdots,v_k,v_1)$ is an $H$-cycle iff $(c(v_1 v_2),\cdots,c(v_{k-1}v_k),$ $c(v_kv_1), c(v_1 v_2))$ is a walk in $H$. Hence, $H$ decide which color transitions are allowed in a walk, in order to be an $H$-walk. Whenever $H$ is a complete graph without loops, an $H$-walk is a properly colored walk, so $H$-walk is a more general concept. In this paper, we work with $H$-colored complete graphs, with restrictions given by an auxiliary graph. The main theorems give conditions implying that every vertex in an $H$-colored complete graph, is contained in an $H$-cycle of length 3 and in an $H$-cycle of length 4. As a consequence of the main results, we obtain some well-known theorems in the theory of properly colored walks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源