论文标题
混音:用于多个实例学习的整体幻灯片图像分类的一般有效框架
ReMix: A General and Efficient Framework for Multiple Instance Learning based Whole Slide Image Classification
论文作者
论文摘要
整个幻灯片图像(WSI)分类通常依赖于深度弱监督的多个实例学习(MIL)方法来处理GigApixel分辨率图像和幻灯片级标签。然而,深度学习的不错的表现来自利用大量数据集和不同的样本,敦促需要有效的培训管道将扩展到大型数据集和数据增强技术以进行多元化样品。但是,当前基于MIL的WSI分类管道是内存量的且计算的,因为它们通常组装成千上万的补丁作为计算袋。另一方面,尽管它们在其他任务中很受欢迎,但对于WSI MIL Frameworks来说,数据增强尚未探索。为了解决这些问题,我们提出了Remix,这是一个基于MIL WSI分类的一般有效框架。它包括两个步骤:减少和混合。首先,它通过用实例原型(即斑块簇质体)代替WSI袋中的实例数量。然后,我们提出了一个``混合式式''增强量,其中包含四个在线,随机和灵活的潜在空间增强。它带来了潜在空间的多样化和可靠的班级身份的语义变化,同时实施语义扰动不变性。我们通过两种最先进的MIL方法在两个公共数据集上评估混音。在我们的实验中,已经实现了精确,准确性和召回率的一致提高,但随着训练时间和记忆消耗的减少阶段,它表明了混音的有效性和效率。代码可用。
Whole slide image (WSI) classification often relies on deep weakly supervised multiple instance learning (MIL) methods to handle gigapixel resolution images and slide-level labels. Yet the decent performance of deep learning comes from harnessing massive datasets and diverse samples, urging the need for efficient training pipelines for scaling to large datasets and data augmentation techniques for diversifying samples. However, current MIL-based WSI classification pipelines are memory-expensive and computation-inefficient since they usually assemble tens of thousands of patches as bags for computation. On the other hand, despite their popularity in other tasks, data augmentations are unexplored for WSI MIL frameworks. To address them, we propose ReMix, a general and efficient framework for MIL based WSI classification. It comprises two steps: reduce and mix. First, it reduces the number of instances in WSI bags by substituting instances with instance prototypes, i.e., patch cluster centroids. Then, we propose a ``Mix-the-bag'' augmentation that contains four online, stochastic and flexible latent space augmentations. It brings diverse and reliable class-identity-preserving semantic changes in the latent space while enforcing semantic-perturbation invariance. We evaluate ReMix on two public datasets with two state-of-the-art MIL methods. In our experiments, consistent improvements in precision, accuracy, and recall have been achieved but with orders of magnitude reduced training time and memory consumption, demonstrating ReMix's effectiveness and efficiency. Code is available.