论文标题

使用双输入UNET从极化SAR数据中得出表面电阻率

Deriving Surface Resistivity from Polarimetric SAR Data Using Dual-Input UNet

论文作者

Wilson, Bibin, Kumar, Rajiv, Bhogapurapu, Narayanarao, Singh, Anand, Sethi, Amit

论文摘要

发现表面电阻率的传统调查方法是耗时的和劳动量的。很少有研究重点是使用遥感数据和深度学习技术找到电阻率/电导率。在这项工作中,我们通过应用各种深度学习方法评估了表面电阻率和合成孔径雷达(SAR)之间的相关性,并在美国Coso地热区中测试了我们的假设。为了检测电阻率,使用了L-band全偏光SAR数据,由UAVSAR获取,并将MT(Magnetoteltolarics)反向电阻率数据用作地面真相。我们进行了实验,以比较各种深度学习架构,并建议使用双输入UNET(DI-UNET)体系结构。 Di-Unet使用深度学习架构使用完整的极化SAR数据来预测电阻率,并承诺对传统方法进行快速调查。我们提出的方法取得了改进的结果,用于从SAR数据中映射MT电阻率。

Traditional survey methods for finding surface resistivity are time-consuming and labor intensive. Very few studies have focused on finding the resistivity/conductivity using remote sensing data and deep learning techniques. In this line of work, we assessed the correlation between surface resistivity and Synthetic Aperture Radar (SAR) by applying various deep learning methods and tested our hypothesis in the Coso Geothermal Area, USA. For detecting the resistivity, L-band full polarimetric SAR data acquired by UAVSAR were used, and MT (Magnetotellurics) inverted resistivity data of the area were used as the ground truth. We conducted experiments to compare various deep learning architectures and suggest the use of Dual Input UNet (DI-UNet) architecture. DI-UNet uses a deep learning architecture to predict the resistivity using full polarimetric SAR data by promising a quick survey addition to the traditional method. Our proposed approach accomplished improved outcomes for the mapping of MT resistivity from SAR data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源