论文标题

在上层平均维度的各种原理上

On variational principle for upper metric mean dimension with potential

论文作者

Yang, Rui, Chen, Ercai, Zhou, Xiaoyao

论文摘要

借用拓扑压力确定拓扑动力学系统中的衡量理论熵的想法,我们建立了上层度量平均维度的变分原理,并且在不变措施的上限理论度量平均维度方面具有潜力。此外,引入了平衡状态的概念,以表征达到各种原理至高无上的措施。

Borrowing the idea of topological pressure determining measure-theoretical entropy in topological dynamical systems, we establish a variational principle for upper metric mean dimension with potential in terms of upper measure-theoretical metric mean dimension of invariant measures. Moreover, the notion of equilibrium state is introduced to characterize these measures that attain the supremum of the variational principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源