论文标题
在上层平均维度的各种原理上
On variational principle for upper metric mean dimension with potential
论文作者
论文摘要
借用拓扑压力确定拓扑动力学系统中的衡量理论熵的想法,我们建立了上层度量平均维度的变分原理,并且在不变措施的上限理论度量平均维度方面具有潜力。此外,引入了平衡状态的概念,以表征达到各种原理至高无上的措施。
Borrowing the idea of topological pressure determining measure-theoretical entropy in topological dynamical systems, we establish a variational principle for upper metric mean dimension with potential in terms of upper measure-theoretical metric mean dimension of invariant measures. Moreover, the notion of equilibrium state is introduced to characterize these measures that attain the supremum of the variational principle.