论文标题
使用长期工具跟踪的基于视频的手术技能评估
Video-based Surgical Skills Assessment using Long term Tool Tracking
论文作者
论文摘要
掌握手术所需的技术技能是一项极具挑战性的任务。基于视频的评估使外科医生可以收到有关其技术技能的反馈,以促进学习和发展。目前,此反馈主要来自手动视频评论,该视频评论是耗时的,并且限制了在许多情况下跟踪外科医生进步的可行性。在这项工作中,我们引入了一种基于运动的方法,以自动评估手术病例视频供稿的手术技能。拟议的管道首先可靠地轨道轨迹,以创建运动轨迹,然后使用这些轨迹来预测外科医生的技术技能水平。跟踪算法采用了一个简单而有效的重新识别模块,与其他最新方法相比,它可以改善ID-开关。这对于创建可靠的工具轨迹至关重要,当乐器定期在屏幕上和屏幕外移动或定期遮盖。基于运动的分类模型采用最先进的自我发明变压器网络来捕获技能评估至关重要的短期和长期运动模式。在体内(Cholec80)数据集上评估了所提出的方法,其中使用专家评级的目标技能评估Calot三角形解剖作为定量技能度量。我们将基于变压器的技能评估与传统的机器学习方法进行比较,并使用拟议的和最新的跟踪方法进行比较。我们的结果表明,使用可靠跟踪方法的运动轨迹对仅根据视频流进行评估的外科医生技能是有益的。
Mastering the technical skills required to perform surgery is an extremely challenging task. Video-based assessment allows surgeons to receive feedback on their technical skills to facilitate learning and development. Currently, this feedback comes primarily from manual video review, which is time-intensive and limits the feasibility of tracking a surgeon's progress over many cases. In this work, we introduce a motion-based approach to automatically assess surgical skills from surgical case video feed. The proposed pipeline first tracks surgical tools reliably to create motion trajectories and then uses those trajectories to predict surgeon technical skill levels. The tracking algorithm employs a simple yet effective re-identification module that improves ID-switch compared to other state-of-the-art methods. This is critical for creating reliable tool trajectories when instruments regularly move on- and off-screen or are periodically obscured. The motion-based classification model employs a state-of-the-art self-attention transformer network to capture short- and long-term motion patterns that are essential for skill evaluation. The proposed method is evaluated on an in-vivo (Cholec80) dataset where an expert-rated GOALS skill assessment of the Calot Triangle Dissection is used as a quantitative skill measure. We compare transformer-based skill assessment with traditional machine learning approaches using the proposed and state-of-the-art tracking. Our result suggests that using motion trajectories from reliable tracking methods is beneficial for assessing surgeon skills based solely on video streams.