论文标题
部分可观测时空混沌系统的无模型预测
GAMa: Cross-view Video Geo-localization
论文作者
论文摘要
跨视野地理定位中的现有工作基于将地面全景与空中图像相匹配的图像。在这项工作中,我们专注于地面视频,而不是图像,这些视频提供了对此任务很重要的其他上下文提示。没有针对此问题的现有数据集,因此我们建议使用GAMA数据集,这是一个带有地面视频和相应空中图像的大型数据集。我们还提出了一种解决这个问题的新方法。在剪辑级,简短的视频剪辑与相应的空中图像匹配,后来用于获得长视频的视频级地理位置定位。此外,我们提出了一种分层方法,以进一步改善剪辑级地理定位。这是一个具有挑战性的数据集,未对齐和有限的视野,我们提出的方法的前1个召回率为19.4%和45.1% @1.0英里。代码和数据集可在以下链接:https://github.com/svyas23/gama上找到。
The existing work in cross-view geo-localization is based on images where a ground panorama is matched to an aerial image. In this work, we focus on ground videos instead of images which provides additional contextual cues which are important for this task. There are no existing datasets for this problem, therefore we propose GAMa dataset, a large-scale dataset with ground videos and corresponding aerial images. We also propose a novel approach to solve this problem. At clip-level, a short video clip is matched with corresponding aerial image and is later used to get video-level geo-localization of a long video. Moreover, we propose a hierarchical approach to further improve the clip-level geolocalization. It is a challenging dataset, unaligned and limited field of view, and our proposed method achieves a Top-1 recall rate of 19.4% and 45.1% @1.0mile. Code and dataset are available at following link: https://github.com/svyas23/GAMa.