论文标题
纯变压器是强大的图形学习者
Pure Transformers are Powerful Graph Learners
论文作者
论文摘要
我们表明,没有图形特异性修改的标准变压器可以在理论和实践中都带来图形学习的有希望的结果。鉴于图,我们只是将所有节点和边缘视为独立的令牌,用令牌嵌入增强它们,然后将它们馈送到变压器中。有了适当的令牌嵌入方式,我们证明这种方法在理论上至少与不变的图形网络(2-ign)一样表达,由等效线性层组成,它已经比所有消息传播图形神经网络(GNN)更具表现力。当在大规模图数据集(PCQM4MV2)上接受训练时,与具有复杂的图形特异性电感特异性偏见相比,与GNN基准相比,与GNN基准相比,与GNN基准相比,与GNN基准相比,与GNN基准相比,我们创造的令牌化图形变压器(Tokengt)的结果明显更好。我们的实施可从https://github.com/jw9730/tokengt获得。
We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice. Given a graph, we simply treat all nodes and edges as independent tokens, augment them with token embeddings, and feed them to a Transformer. With an appropriate choice of token embeddings, we prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers, which is already more expressive than all message-passing Graph Neural Networks (GNN). When trained on a large-scale graph dataset (PCQM4Mv2), our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results compared to Transformer variants with sophisticated graph-specific inductive bias. Our implementation is available at https://github.com/jw9730/tokengt.