论文标题

学习用于高动态范围成像的正则多尺度功能流

Learning Regularized Multi-Scale Feature Flow for High Dynamic Range Imaging

论文作者

Ye, Qian, Suganuma, Masanori, Xiao, Jun, Okatani, Takayuki

论文摘要

从一组多曝光图像中重建无精神的高动态范围(HDR)图像是一项具有挑战性的任务,尤其是在大型对象运动和闭塞的情况下,使用现有方法导致可见的人工制品。为了解决这个问题,我们提出了一个深层网络,该网络试图学习以正规损失为指导的多尺度特征流。它首先提取多尺度功能,然后对非参考图像的特征对齐。对齐后,我们使用残留的通道注意块将不同图像的特征合并。广泛的定性和定量比较表明,我们的方法可实现最先进的性能,并在颜色伪影和几何变形大大减少的情况下产生出色的结果。

Reconstructing ghosting-free high dynamic range (HDR) images of dynamic scenes from a set of multi-exposure images is a challenging task, especially with large object motion and occlusions, leading to visible artifacts using existing methods. To address this problem, we propose a deep network that tries to learn multi-scale feature flow guided by the regularized loss. It first extracts multi-scale features and then aligns features from non-reference images. After alignment, we use residual channel attention blocks to merge the features from different images. Extensive qualitative and quantitative comparisons show that our approach achieves state-of-the-art performance and produces excellent results where color artifacts and geometric distortions are significantly reduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源