论文标题

与双CNN的多域纤维酶的结合预测

Binding prediction of multi-domain cellulases with a dual-CNN

论文作者

Schaller, Kay S., Kari, Jeppe, Borch, Kim, Peters, Günther H. J., Westh, Peter

论文摘要

纤维素酶对生物燃料和生化物的生产有很大的希望。但是,它们是作用于复杂异质底物的模块化酶。由于这种复杂性,其催化特性的计算预测仍然很少,这限制了酶的发现和酶设计。在这里,我们提出了一个双输入卷积神经网络,以预测多域酶的结合。该回归模型的表现优于先前基于分子动力学的方法,用于在一小部分时间内对纤维酶的结合预测。另外,我们表明,当更改为分类问题时,可以将同一网络反向传播以提示突变以改善酶结合。一种类似的方法可以增加我们对酶的结构活性关系的理解,并提出使用可解释的人工智能的酶设计的新的有前途的突变。

Cellulases hold great promise for the production of biofuels and biochemicals. However, they are modular enzymes acting on a complex heterogeneous substrate. Because of this complexity, the computational prediction of their catalytic properties remains scarce, which restricts both enzyme discovery and enzyme design. Here, we present a dual-input convolutional neural network to predict the binding of multi-domain enzymes. This regression model outperformed previous molecular dynamics-based methods for binding prediction for cellulases in a fraction of the time. Also, we show that when changed to a classification problem, the same network can be back-propagated to suggest mutations to improve enzyme binding. A similar approach could increase our understanding of the structure-activity relationship of enzymes, and suggest new promising mutations for enzyme design using explainable artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源