论文标题
对草莓的桁架和跑步者进行分类的深度学习方法
Deep Learning approach for Classifying Trusses and Runners of Strawberries
论文作者
论文摘要
在农业部门中使用人工智能以迅速增长以使农业活动自动化。新兴的农业技术专注于植物,水果,疾病和土壤类型的映射和分类。尽管使用深度学习算法的辅助收获和修剪应用处于早期开发阶段,但需要解决此类过程自动化的解决方案。本文建议使用深度学习将草莓植物的桁架和跑步者分类,并使用语义分割和数据集扩展分类。所提出的方法是基于使用噪声(即高斯,斑点,泊松和盐和辣椒)来人为地增加数据集并补偿数据样本数量少并提高整体分类性能。使用平均精度,召回和F1得分的平均值评估结果。提出的方法分别在精确,召回和F1分别获得了91%,95%和92%,用于使用RESNET101进行桁架检测,并利用盐和辣椒噪声进行了数据集增强。使用Poisson噪声,使用RESNET50使用RESNET50进行桁架检测,精确度,召回和F1分别为83%,53%和65%。
The use of artificial intelligence in the agricultural sector has been growing at a rapid rate to automate farming activities. Emergent farming technologies focus on mapping and classification of plants, fruits, diseases, and soil types. Although, assisted harvesting and pruning applications using deep learning algorithms are in the early development stages, there is a demand for solutions to automate such processes. This paper proposes the use of Deep Learning for the classification of trusses and runners of strawberry plants using semantic segmentation and dataset augmentation. The proposed approach is based on the use of noises (i.e. Gaussian, Speckle, Poisson and Salt-and-Pepper) to artificially augment the dataset and compensate the low number of data samples and increase the overall classification performance. The results are evaluated using mean average of precision, recall and F1 score. The proposed approach achieved 91%, 95% and 92% on precision, recall and F1 score, respectively, for truss detection using the ResNet101 with dataset augmentation utilising Salt-and-Pepper noise; and 83%, 53% and 65% on precision, recall and F1 score, respectively, for truss detection using the ResNet50 with dataset augmentation utilising Poisson noise.